New translational perspectives in cardiovascular medicine

Attila Tóth Division of Clinical Physiology

What do we learn today?

Beriberi is a relatively common disease in Asia, sailors and prisoners.

1873: a Dutch naval doctor observed that European crew members had significantly fewer cases of beriberi than sailors recruited from the East Indies. When the amount of white rice in the diet of the East Indies sailors was decreased, the rate of beriberi came down. Beriberi was believed to have been caused by some toxin or infectious agent in the white rice. Kanehiro Takaki, a Japanese naval doctor, was the first to report beriberi as a nutritional deficiency. His reports were based on the fact that the incidence of beriberi reduced in Japanese sailors when they were given additional meat, dry milk, and vegetables.

What do we learn today?

In 1875, after taking his preliminary examinations, Eijkman became a student at the Military Medical School of the University of Amsterdam, where he was trained as a medical officer for the Netherlands Indies Army, passing through all his examinations with honours.

Christiaan Eijkman was appointed as Director of the "Dokter Dijaws School" (Javanese Medical School) in 1888. Eijkman was also Director of the "Genesekundig Laboratorium" (Medical Laboratori) from January 15. JSB 80 March A. 1985, and during that time he made a number of his most important researches. These dealt first of all with the physiology of people living in tropical regions. He was able to demonstrate that a number of theories had no factual basis.

Eijkman realized that the real cause of beriberi was the deficiency of some vital substance in the staple food of the natives, which is located in the so-called "silver skin" (pericarpium) of the rice. This discovery has led to the concept of vitamins.

Eijkman noticed that when fowl were fed a diet solely consisting of polished white rice, they developed symptoms similar to beriberi. By adding rice polishings, the material removed from whole rice to produce white rice, to the feed, Eijkman was able to cure the fowl of beriberi.

In 1926, pure thiamine, the true anti-beriberi vitamin, was isolated by two Dutch scientists, Barend Jansen and W. F. Donath, working in Java.

www.nobelprize.org

Translational medicine

The term translational medicine was introduced in the 1990s but only gained wide usage in the early 2000s. Its definition varies according to the stakeholder. Patients, physicians, and other practitioners tend to use the term to refer to the need to accelerate the incorporation of benefits of research into clinical medicine and to close the gap between "what we know" and "what we practice". Academics tend to interpret translational medicine as the testing of novel concepts from basic research in clinical situations, which in turn provide opportunity for the identification of new concepts. In industry it is used in reference to a process that is aimed at expediting the development and commercialization of known therapies. Although different, these interpretations are not mutually <u>acclusive</u>. Rather, they reflect different priorities for achieving a common goal.

www.britannica.com

Phase 1 (T1): move basic discovery to clinical application

Phase 2 (T2): assess the value of a clinical application to develop therapeutic guidelines

Phase 3 (T3): move evidence-based guidelines into health practice

Phase 4 (T4): evaluate the real world health outcomes.

	Modern pharmad	cology	
Properties	Small molecules	Protein-based drugs	siRNA/miRNA-based drugs
Nature of action	Activation or inhibition of targets	Activation or inhibition of targets	Inhibition of targets
Site of target proteins	Extracellular and Intracellular	Mainly extracellular	Virtually any sites
Selectivity and sotency	Variable (depending on binding-site and ligand specificity, their affinity and efficacy etc.)	Highly specific and potent	Highly specific and potent
ead optimization	Slow	Slow	Rapid
Manufacture	Easy	Difficult	Easy
Stability	Stable	Unstable	Unstable
Delivery	Easy	Difficult	Difficult

			То	p 2	00	Pha	arm	ace	euti	cal:	s by	y R	eta	il S	ale	s in	20	19		
-	長く		V	ني ة. مرك	1280g	II	ž	1	35		ŵ	-	۵	•	1	H Soro.		- <u>Lan</u> Art	Ť	- <u>-</u>
[z (6. 1	×.		か	N	*	1	3.	Ŷ	Nuch		- 10	- 145	-	1		2			4
	三く	Y	À		Station of the	nde Nde	藏		長く	1997 II	12	수		4	•	540	93- 93-	1900	長山	21 P
	ļ.	*	il shi		The second s	1000	۲	3335 6	1 2 g II	The second		R	英	4	100	1000		- All	25.91	*
c	(Silvala	****	- 198 (3))	14. S	N.W.	N SA	1.8. 		H Strange	1000	138 B	100		20				3	12	
		jike Nite	- - - - - - - - - - - - - - - - - - -	藏	*	-	12.00	Å	rigorican Savis	150 c			-	1	\$	200		-	100	1.00
	diff and	in que que	I open	Prif		1000		33	NY Y	1.200- 1.200-	-1100		1000	1000	- = 	÷0		720	Sec. 1	-
	Ech II	al de la	0		1 Loga			や		a fi	ų.	Section 1		20 L	-	*	\$.	長	#	4
	Nu post	•	λų.	4	1000		1000	1000	wb	100 A	200	-	200	- 40 - 40 - 40	038.1		8	5		302
	「	100	-	1000	Supp.	٠	1	, AB	1010	all a	- Sinte	Car an I	2940. 2940.	• 1 .	275.	16.67 10	100	*		100
//www.nharmaevcinient	scom		/ton-7	00. dru	es-201	9/	-					-					-	-		

RNA	based thera	apeutical approa	ches			
Single-stranded ASO	Double-stranded siRNA	Self-replicating mRNA	CRISPR-Cas9 sgRNA			
XX	MM	ممم المعم	8			
(4–10 kDa)	(~14 kDa)	(600–10,000 kDa)	(~200 kDa)			
Limited No bioavailability						
bloavan	The billio	n-year-old barrier	Small- molecule drugs	ie Maizels/Springer N		
/		61900		Debt		

	siRNA	miRNA
Prior to Dicer processing	Double-stranded RNA that contains 30 to over 100 nucleotides	Precursor miRNA (pre-miRNA) that contains 70-100 nucleotides with interspersed mismatches and hairpin structure
Structure	21-23 nucleotide RNA duplex with 2 nucleotides 3'overhang	19-25 nucleotide RNA duplex with 2 nucleotides 3'overhang
Complementary	Fully complementary to mRNA	Partially complementary to mRNA, typically targeting the 3' untranslated region of mRNA
mRNA target	One	Multiple (could be over 100 at the same time)
Mechanism of gene regulation	Endonucleolytic cleavage of mRNA	Translational repression Degradation of mRNA Endonucleolytic cleavage of mRNA (rare, only when there is a high level of complementary between miRNA and mRNA
Clinical applications	Therapeutic agent	Drug target Therapeutic agent Diagnostic and biomarker tool

Species/Normulation	Packaging capacity	Applications and considerations	
		viral vector	
Alteruisinus	60.10 -35 kb, smally <10.40	IBDNA vector with large packaging capacity, Manufert supression, highly incluragenc	
Ademo-associated virue (AAV)	-4340	sačinki vector, small packaging capacity, midy immunopenic, lasting expression in nonthisting cells, (apost pseudohjoingangineering facilitates specific cell-targeting	
Lettinus	Up to 13.5 4b Geger Inserts will decrease threi	But wetter, integration competent and incompetent forms available, tess intra-poperic than advectors of AVC envelope speedolgging facilitates and largering, clinical and octors now difficult then for advectors or AVC	
Herpes singles virus	1040	DNA sector, spisonal, lasting expression, immunigeris	
		Electorial sector species *	
Escherichia coli, 5. Typhymanara ^a		Defers of dust halige this or anal insching this to get time	
		Non-what formulations ¹	
Hanoporticle		Bell assembling, may target specific receptors, requires technical expertise to prepare	
Stable machine acid light particle (Shiki(2))		Datie for systemic delivery, broad cell-type delivery	
Apparter		Targeting of specific receptors, requires sugfilializated screening to develop	
Orcleaners		Stable for systemic delivery, broad cell-type delivery	
		Topresentative references.	
		terial contradis can carry chemistry, also reportering Mida or down.	

RNA therapeutics in CVD as summarized by ChatGPT

 - Antisene oligonucleotidei (JASO): These are single-tranded RNA molecules that bind to complementary sequences of target RNAs and inhibit herr function by various mechanisms, such as degradations, splicing modulation, cor transition inhibition. ASOs have been used to treat CVD by targeting genes involvedin ligid metabolism, inflammation, fibrosis, and carduc hypertrophy. Damples of approved ASOs for CVD are mipomersen (for familial hypercholesterolemia) an inclision (or hyperpendipedima).

 Small interfiniting RNAs (siRNAs), These are double-stranded RNA notecules that induce sequence-specific clowage of target RNAs by the RNA interference (RNAi) pathway, SRNAs have been used to treat CVD by targeting genes involved in lipid metabolism, intimamation, angiogenesis, and cardiac remodeling. Examples of approved sRNAs for CVD are patistican and govarian (for herediary transityretin-metalated amyloidosis).

 Aptamens: These are single-stranded RNA molecules that fold into complex three-dimensional structures and bind to specific targets with high affinity a specificity. Aptamers have been used to treat CVD by targeting proteins involved in coagulation, platelet aggregation, inflammation, and angiogenesis.

-Messenger RNAs (mRNAs): These are single-stranded RNA molecules that encode proteins and are translated by ribosomes. mRNAs have been used to CVD by delivering therapeutic proteins or antigens to cells or its sues. mRNAs have been used to induce angiogenesis, cardiomycotre regeneration, termungenedultities and unscripted to Example of Anacound RNMA for Diverse analymetric termological delivers to induce the complex of t

	Мо	noclonal antib	ody-based drug	gs – risks					
Flihmann	et al.		Bar	opean Journal of Pharmaceutical Sciences 12	28 (2019)				
		SMALL MOLECULE DRUGS	BIOLOGICS	NBCDs					
	Molecular weight	Low (<500)	High (range	5-900 kDa)					
	Structure	Simple, well-defined	Complex, heterogeneous, defined by manufacturing process						
	Modifications	Well-defined	Many options						
	Manufacturing	Chemical synthesis	Produced in living cells or organisms	Synthetic technologies (incl. nanotech)					
	Stability	Stable Generally unstable, s	Generally unstable, sensit	ive to external conditions					
	Immunogenicity	Mostly non-immunogenic	Mostly immunogenic	Immunogenicity varies					
	Copy characteristics	Identical copies can be made	Impossible to er copy ve	nsure identical rsions					

Monoclonal antibody-based therapeutics in CVD as summarized by ChatGPT

 Alirocumab and evolocumab are monoclonal antibodies that bind to PCSK9 and prevent its interaction with the low-density lipoprotein receptor (LDLR), thereby increasing LDLR expression and reducing low-density lipoprotein choicsterol (LDLC) levels. These antibodies have been approved by the FDA for the treatment of hypercholesterolemain a patients who are not adequately controlled by statiss or who have familial hypercholesterolema. They have also shown to reduce the risk of cardiovascular events in dirical trias.

 Canakinumab is a monoclonal antibody that inhibits interleukin-1 beta (It-1β), a pro-inflammatory cytokine that plays a role in atheroscierosis and plaque ruptur Canakinumab has been approved for the treatment of are auto-inflammatory syndromes, and has been tested in a large randomized trial (CNTOS) for the prevention of recurst cardiovascular events in patients with initiory of mozorital infarction and elevated C-reactive proteine levels. The trial showed a significant reduction in cardiovascular mortality and non-fatal myocardial infarction and elevated risk of fatal infections.

- inclision is a monocional antibody that targets apolipoprotein B (apoB), the main protein component of LD-C and other atherogenic lipoproteins. Inclision inhibits the synthesis of apoB by binding to its mRNA and inducing its degradation. Inclision has been shown to lower LD-C levels by up to 50% in phase 2 trials, and is currently being evaluated in phase 1 trials for cardiovaculturoutcomes.

 Other monoclonal antibodies that target inflammatory cytokines, such as tumor necrosis factor alpha (TNF-q), interleukin 6 (II-6), interleukin 7 (II-17), and interleukin-12/23 (II-12/23), have been used for the treatment of autoimmune diseases, such as the mutatoid arthritis, sporiasis, and (Cahn's Saeses. Some of the antibodies: may also have been ficial effects on activoxocutar diseases, as inflammation is a key driver of atherosciensis and in the complications. However, the evidence for their efficacy and safety in cardiovascular settings is limited and inconsistent, and further studies are needed to determine their role in this field.