
Hypertension

Miklós Fagyas, M.D. PhD. MSc.

University of Debrecen
Department of Cardiology
Division of Clinical Physiology

Hypertension

Definition/diagnostics*

Category	Systolic (mmHg)		Diastolic (mmHg)
Optimal blood pressure	< 120	and	< 80
Normal blood pressure	120 - 129	and	80 - 84
High-normal blood pressure	130 - 139	and / or	85 - 89
Grade 1 hypertension	140 - 159	and / or	90 - 99
Grade 2 hypertension	160 - 179	and / or	100 - 109
Grade 3 hypertension	≥ 180	and / or	≥ 110
Isolated systolic hypertension	≥ 140	and	< 90
Isolated diastolic hypertension	< 140	and	≥ 90

WARNING!

Whelton PK, et al.
2017 High Blood Pressure Clinical Practice Guideline

2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA
Guideline for the Prevention, Detection, Evaluation, and Management
of High Blood Pressure in Adults

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

Table 6. Categories of BP in Adults*

BP Category	SBP		DBP
Normal	<120 mm Hg	and	<80 mm Hg
Elevated	120–129 mm Hg	and	<80 mm Hg
Hypertension			
Stage 1	130–139 mm Hg	or	80–89 mm Hg
Stage 2	≥140 mm Hg	or	≥90 mm Hg

^{*}Individuals with SBP and DBP in 2 categories should be designated to the higher BP category.

BP indicates blood pressure (based on an average of ≥2 careful readings obtained on ≥2 occasions, as detailed in Section 4); DBP, diastolic blood pressure; and SBP systolic blood pressure.

Please cite this article as: Whelton PK, Carey RM, Aronow WS, Casey Jr DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith Jr SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams Sr KA, Williamson JD, Wright Jr JT, 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults, *Journal of the American College of Cardiology* (2017), doi: 10.1016/j.jacc.2017.11.006.

Epidemiology

Prevalence: 30-45 % in the population (~1.28 billion patients)

35 % in the Hungarian adult population

2.5 % in the Hungarian adolescent population

Significance:

- +1 mmHg increase of BP \rightarrow +1.5% excess in cardiovascular mortality.
- HT causes 58% of coronary heart disease, and 75-90% of stroke.
- Effective HT treatment can reduce cardiovascular mortality by 21%.
- Lowering systolic blood pressure (SBP) by 10 mmHg would reduce the relative risk of stroke by 30%.

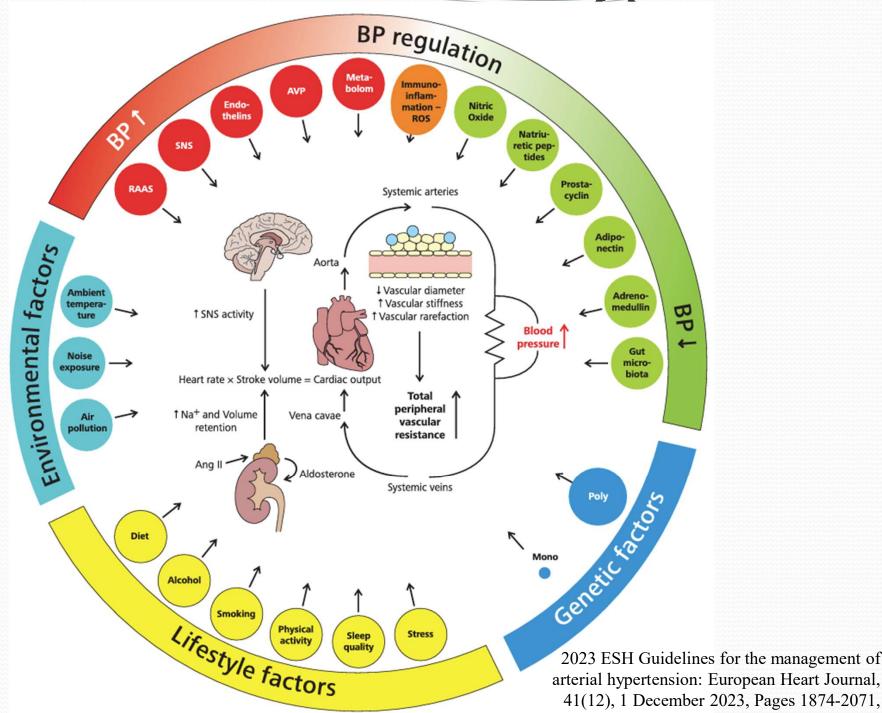
Essential

85-95%

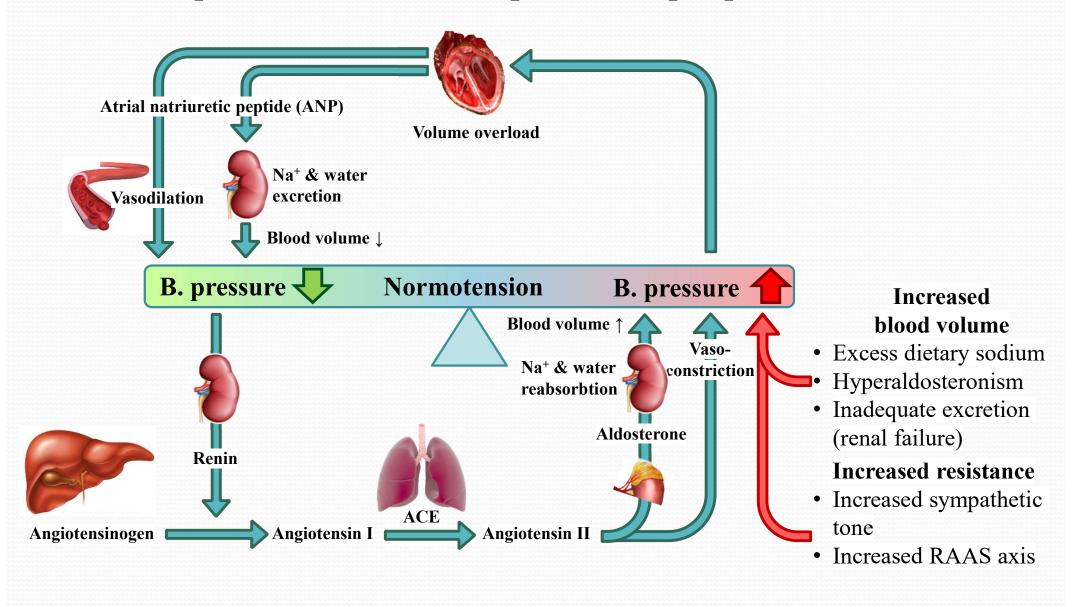
Secondary
(5-15%)

A general practice includes ~ 1800 individuals

~630 hypertensive patients


~567 patients suffer from essential hypertension

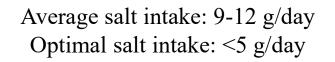
A general practice includes ~ 1800 individuals

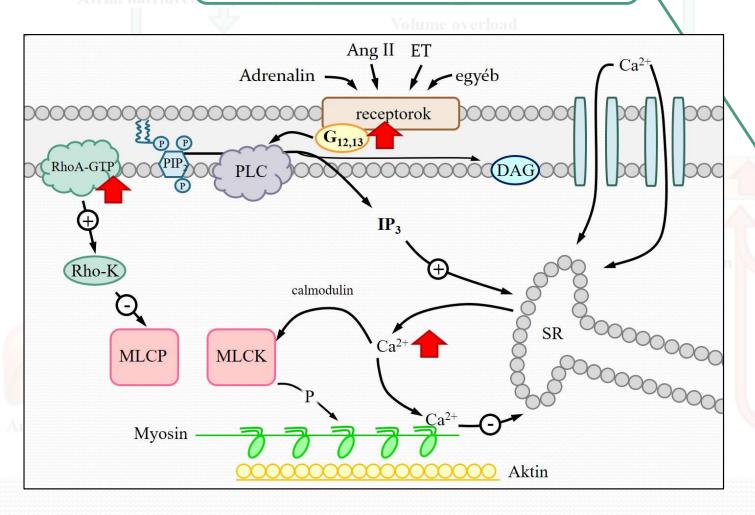

~630 hypertensive patients

~63 patients suffer from secondary hypertension

Pathomechanism of essential hypertension

Blood pressure = Cardiac output x Total peripheral resistance


Blood pressure = Cardiac output x Total peripheral resistance


Average salt intake: 9-12 g/day Optimal salt intake: <5 g/day

Increased blood volume

- Excessive dietary sodium intake
- Hyperaldosteronism
- Inadequate excretion Increased resistance
- Increased sympathetic tone
- Increased RAAS activity

Blood pressure = Cardiac output x Total peripheral resistance

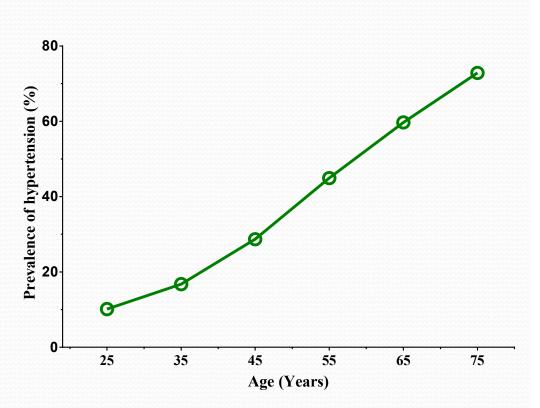
Increased blood volume

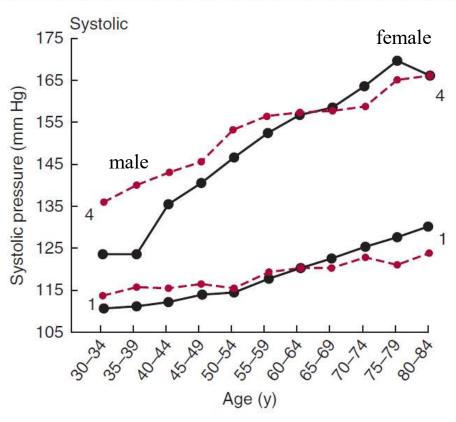
- Excessive dietary sodium intake
- Hyperaldosteronism
- Inadequate excretion Increased resistance
- Increased sympathetic tone
- Increased RAAS activity

Blood pressure = Cardiac output x Total peripheral resistance

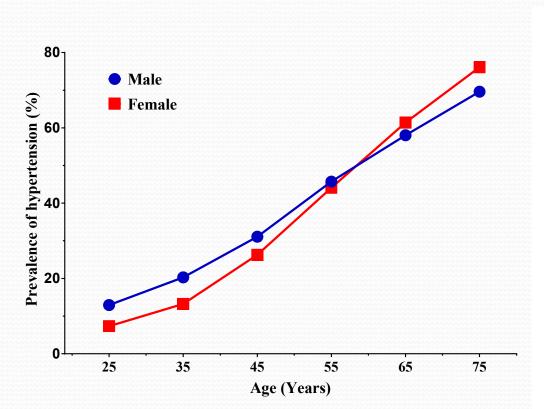
Average salt intake: 9-12 g/day Optimal salt intake: <5 g/day

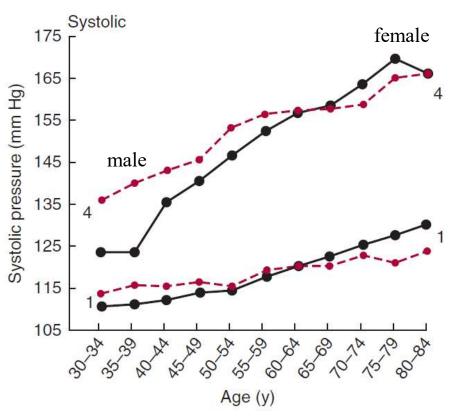
- Increased sympathetic tone in 50% of hypertensive cases
- Increased renin secretion
- Increased renal tubular Na⁺ reabsorption
- Renal vasoconstriction
- Hyperkinetic blood circulation
- Increased resting heart rate
- Increased cardiac output
- Elevated norepinephrin level


Increased blood volume


- Excessive dietary sodium intake
- Hyperaldosteronism
- Inadequate excretion

Increased resistance


- Increased sympathetic tone
- Increased RAAS activity


Age

Age Gender

Age Gender Obesity

- Abdominal type of obesity
- $+1 \text{ kg/m}^2 \text{ BMI} \rightarrow +12\% \text{ increased HT risk}$
- +10 kg weight gain \rightarrow +3 mmHg systolic BP and +2.2 mmHg diastolic BP
- 42.2% of patients diagnosed with HT is overweight (BMI: 25-30), 34.5% is obese (BMI > 30)

Forrás: dreamstime.com

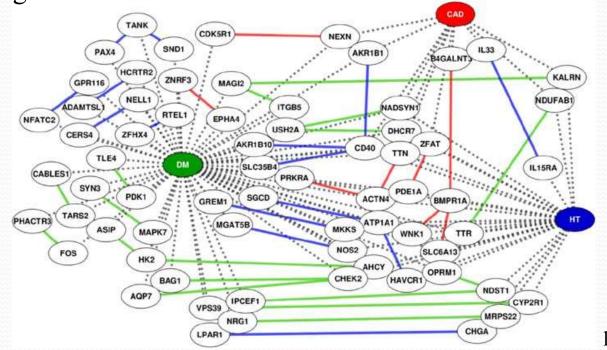
Age	Gender	Obesity	Diabetes

Diabetic patients have twice the prevalence of HT.

Age	Gender	Obesity	Diabetes
-----	--------	---------	----------

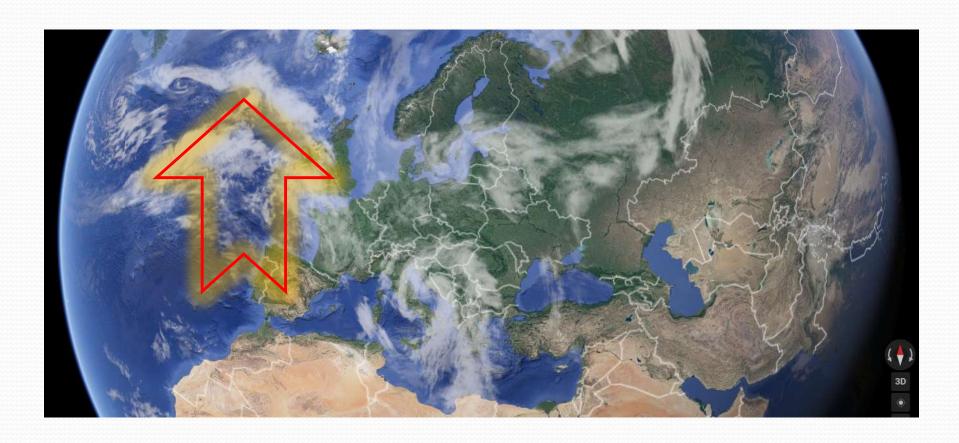
Cardiovascular risk*

Risk factors (RF),	Blood pressure (mmHg)			
asymptomatic organ damage	High normal 130-139 / 85-89	Grade 1 HT 140-159 / 90-99	Grade 2 HT 160-179 / 100-109	Grade 3 HT ≥180 / ≥110
No other RF	Low (<1%)	Low	Moderate (1-5%)	High
1-2 RF	Low	Moderate	Moderate - High	High
≥ 3 RF	Low - Moderate	Moderate - High	High	High
Organ damage, CKD stage 3 or diabetes	Moderate - High	High (5-10%)	High	High - Very high
Symptomatic CVD, CKD stage ≥4 or diabetes with organ damage	Very high (>10%)	Very high	Very high	Very high

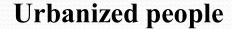

*The risk of mortality due to CV (not just coronary) diseases over 10 years.

Age Gender Obesity Diabetes

Genetic factors


- The prevalence of HT is higher in those adolescents whose parents suffer from HT.
- HT of the child is more positively correlated with maternal HT, than with paternal HT.

• When one of the monozygotic twins has HT, probably the other will also be diagnosed with HT.


genominfo.org https://doi.org/10.5808/GI.2014.12.4.181

Age	Gender	Obesity	Diabetes
Genetic factors	Geography		

AgeGenderObesityDiabetesGenetic factorsGeographySociodemographic factors

prevalence: 41%

Non-urbanized people

prevalence: 26,8%

http://www.americantower.com; http://kep.cdn.index.hu

Age	Gender	Obesity	Diabetes
Genetic factors	Geography	Sociodemographic factors	Others

- Physical inactivity: increases risk for HT by 30%
- Low income women: +33%
- Hypertension is twice as common in African Americans than in Caucasians

Secondary

5-15%

A general practice includes ~ 1800 individuals

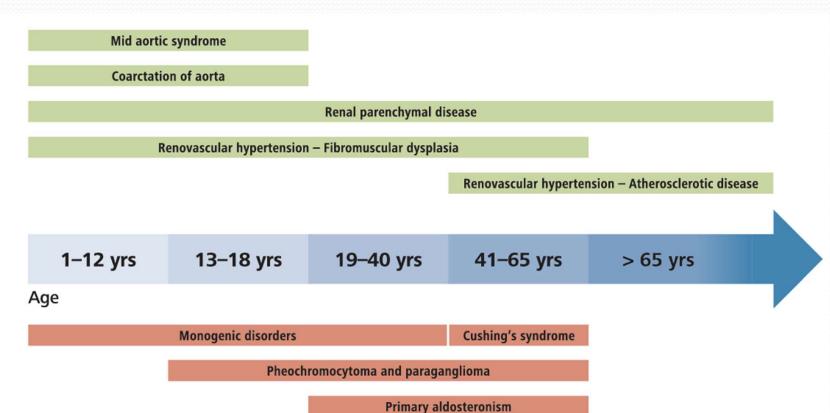
~630 hypertensive patients

~567 patients suffer from essential hypertension

A general practice includes ~ 1800 individuals

~630 hypertensive patients

~63 patients suffer from secondary hypertension

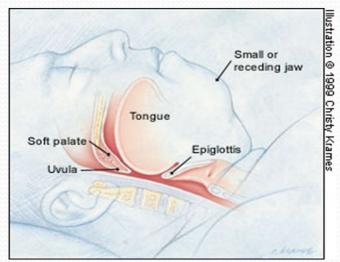

Secondary 5-15%

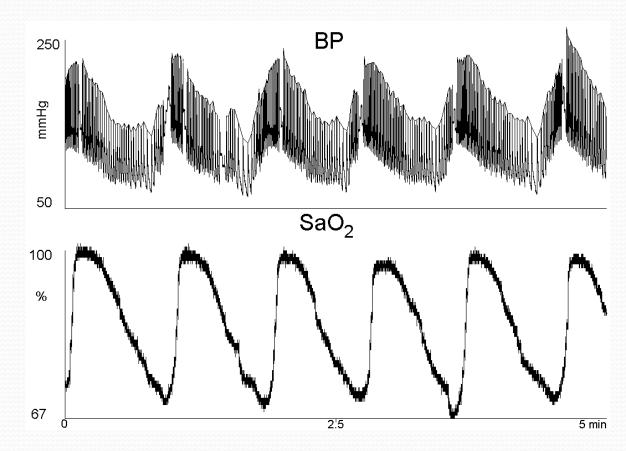
A secondary etiology may be suggested:

- History, the results of physical examination and the laboratory investigation suggest secondary causes of HT
- Treatment-resistant HT (3-drug combinations at maximum tolerated dose)
- Sudden progression of previously well-controlled HT
- The degree of target organ damage (TOD) is not proportional to the severity of HT
- Negative family history of HT
- Early onset before 40 years of age

Essential 85-95%

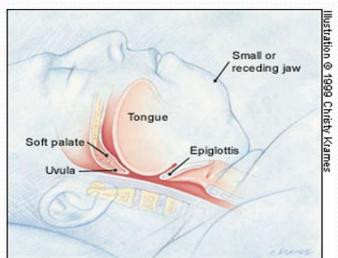
Secondary 5-15%

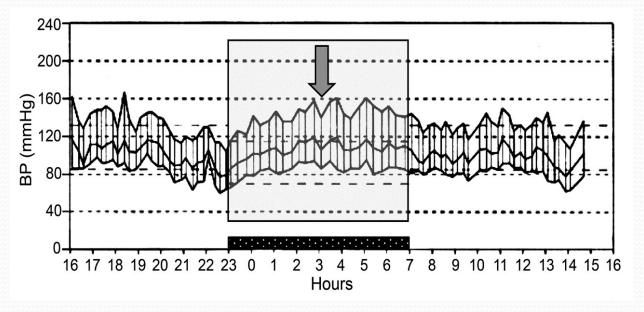



'Frequent' causes behind secondary hypertension

	Cause	Prevalence in hypertensive patients
Airway cause	Obstructive sleep apnoea	5-10%
Kidney causes	Renal parenchymal disease	2-10%
	Renovascular disease	1-10%
Endocrin causes	Primary hyperaldosteronism	5-15%
	Phaeocromocytoma	<1%
	Chusing's syndrome	<1%
	Hyper- or hypothyroidism	1-2%
	Hyperparathyroidism	<1%
Medication/ substance	oral contraceptive pill, diet pills, stimulant drugs (amphetamine) etc	
Other causes	Preeclampsia, eclampsia	
	Coarctation of the aorta	
	Increased intracranial pressure	

Airway cause, obstructive sleep apnoea:





Airway cause, obstructive sleep apnoea:

Renal causes:

• Renoparenchymal (chronic glomerulonephritis, chronic pyelonephritis, etc.)

2-10% of HT patients

Pathomechanism:

The number of functioning nephrons \
\times \
Na^+ and water excretion \times

(in addition: peripheral vascular resistance ↑, baroreflex activity ↓, dyslipidaemia and significant atherosclerosis)

Renovascular

1-10% of HT patients

Pathomechanism:

Significant stenosis
of the renal artery

↓
Renal blood perfusion↓

↓
RAAS↑

Causes: atherosclerosis (2/3), fibromuscular dysplasia (1/3), other: aneurysm, etc.

Renal causes:

• Renoparenchymal (chronic glomerulonephritis, chronic pyelonephritis, etc.)

2-10% of HT patients

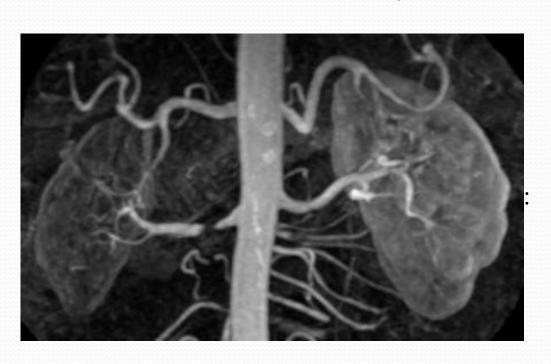
Pathomechanism:

The number of functioning nephrons \

Na⁺ and water excretion ↓

(in addition: peripheral vascular resistance ↑, baroreflex activity ↓, dyslipidaemia and significant atherosclerosis)

Renovascular


1-10% of HT patients

Pathomechanism:

Significant stenosis of the renal artery

Renal blood perfusion \

Endocrine disorders:

Primary hyperaldosteronism

5-15% of HT patients

Causes:

bilateral adrenal hyperplasia (60%) unilateral adrenal adenoma (35%)

Cushing's syndrome/disease

<1% of HT patients

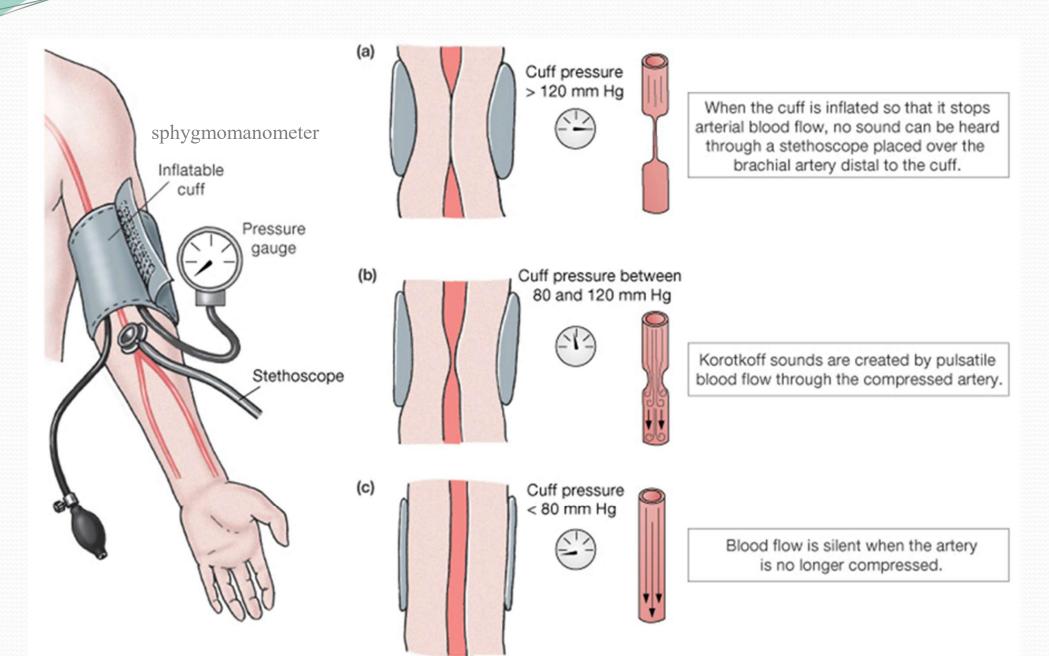
Causes:

Renal mineralocorticoid receptors are sensitive to glucocorticoids.

Hypo/hyperthyroidism

Complex pathomechanism:

TPR ↑ (hypothyroidism)


Increased protein synthesis (hyperthyroidism)

Pheochromocytoma

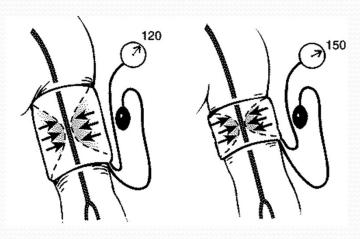
Prevalence: 0.05-0.1%

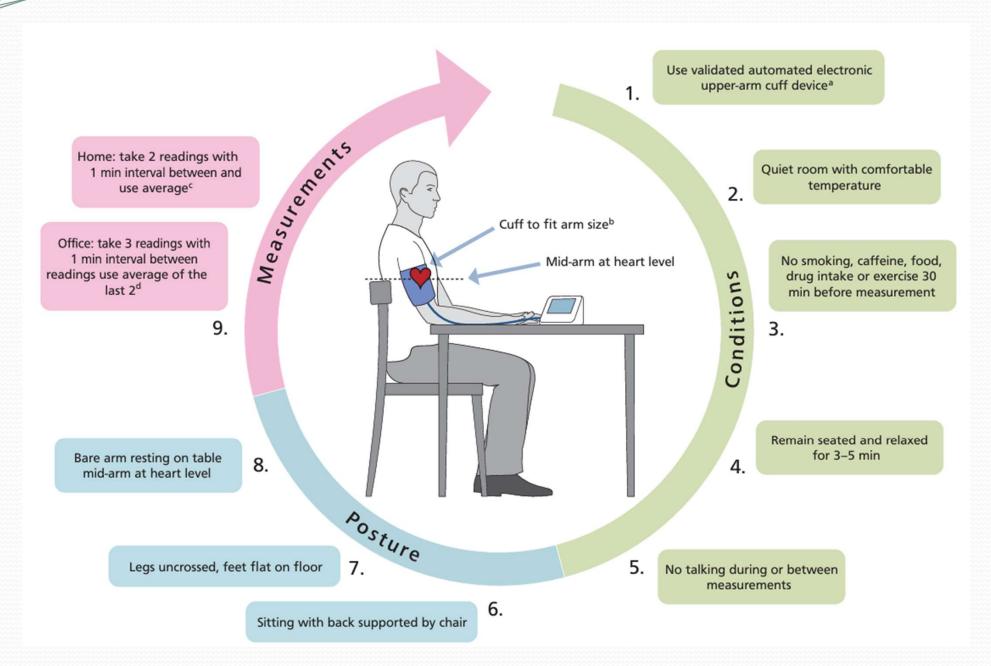
Causes:

Hormon producing adenomas/adrenocortical cancer epinephrine \(\psi\), norepinephrine \(\psi\), (domapine \(\psi\))

Site of measurement: wrap cuff around the upper arm free of clothing with the lower border of the cuff approximately 2-3 cm above the elbow band.

Caution! Regulare use of these devices are not recommended!





Cuff size: too tight or too short cuff +20-30 mmHg

Mid-upper arm cirumference	Cuff size	
10 cm	4 x 8 cm	Newborn size
15 cm	6 x 12 cm	Infant size
22 cm	9 x 18 cm	Child size
22-26 cm	12 x 22 cm	Small adult size
27-34 cm	16 x 30 cm	Regular adult size
35-44 cm	16 x 36 cm	Large adult size
45-52 cm	16 x 42 cm	Adult thigh size

2023 ESH Guidelines for the management of arterial hypertension: European Heart Journal, 41(12), 1 December 2023, Pages 1874-2071,

Measurement conditions:

- Ø coffein, Ø alcohol, Ø smoking 30 minutes before the measurement!
- Patient should be seated and relaxed at least 5 minutes before reading and during the procedure! (room temperature, quiet, empty bladder)!
- Both patient and examiner should refrain from talking during the measurement!
- Patient should be seated with legs uncrossed!
 Crossing the legs increases systolic BP with +2-6 mmHg.
- Patient should be seated with back supported, muscles relaxed!

 The lack of back support results in a +6 mmHg increase in diastolic blood pressure.
- The lower arm should be level with the heart supported on a pillow, slightly flexed at elbow!
 - Each 2.5 cm difference between heart level and site of measurement results in a 2 mmHg deviation.
- At least 2-3 readings should be taken, with a 1-2-minute intervals and take the average of multiple readings!
- In immobilized patients diastolic BP may be lower with 5 mmHg.

Treatment of hypertension

Lifestyle modifications

Treatment strategies	Recommendation	Effect of treatment on systolic BP
Weight loss	Reach or maintain normal BMI (<25kg/m²)	- 5-20 mmHg / 10 kg weight loss
Reduced sodium intake	Reduced sodium intake <5 g/day	- 2-8 mmHg
Mediterranean diet (DASH* diet)	Legume, fruits, low fat diary products, decreased consumption of saturated fatty acids, increased intake of K ⁺ , Ca ²⁺	- 8-10 mmHg
Physical activity	Regular physical activity (30-60 min/day) every day	- 4-9 mmHg
Alcohol consumption	Maximum 2 beverages/day/man (25g alcohol), or 1 beverages/day/woman (12.5g alcohol)	- 2-10 mmHg

*Dietary Approaches to Stop Hypertension

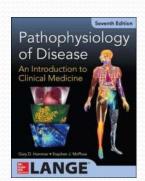
Treatment of hypertension

Antihypertensive medications

Clinical feature	Recommended antihypertensive drug		
Target organ damage			
Left ventricular hypertrophy	ACE-inhibitor/ARB, calcium-antagonist, diuretics		
Asymptomatic atherosclerosis	Calcium-antagonist, ACE-inhibitor/ARB		
Microalbuminuria	ACE-inhibitor/ARB		
Renal disfunction	ACE-inhibitor/ARB		
Comorbidities			
Stroke/TIA	Any antihypertensive drugs		
After myocardial infarction	β-blocker, ACE-inhibitor/ARB		
Atrial fibrillation	ACE-inhibitor/ARB, β-blocker, aldosterone antagonist, non dihidropiridin calcium-antagonist		
Aorta aneurism	β-blocker, non dihidropiridin calcium-antagonist		
Diabetes mellitus	ACE-inhibitor/ARB, calcium-antagonist, diuretics, imidazolin-receptor-antagonist		
Other conditions			
Isolated systolic hypertension	Diuretics, calcium-antagonist		
Etc.	Etc.		

Literature

A Magyar Hypertónia Társaság Szakmai Irányelve:


A hypertoniabetegség ellátásának irányelvei

Hypertonia és Nephrologia, 2018;22 (Suppl. 5) S1-S36.

2023 ESH Guidelines for themanagement of arterial hypertension European Heart Journal, Volume 41, Issue 12, 1 December 2023, Pages 1874-2071, https://doi.org/10.1097/HJH.00000000000003480.

Published: 26 September 2023

Pathophysiology of Diseases: An introduction to clinical medicine 7th edition Gary D . Hammer, Stephen J. McPhee

Pages: 298-299; 310-314, 458-459,