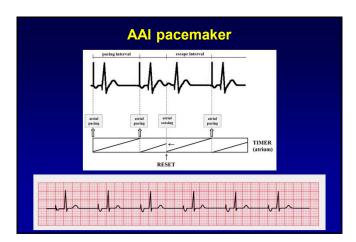
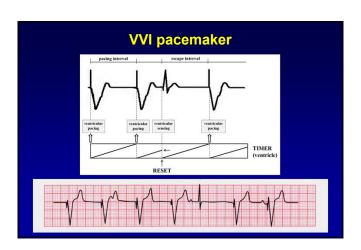

ELECTRONIC PACEMAKERS

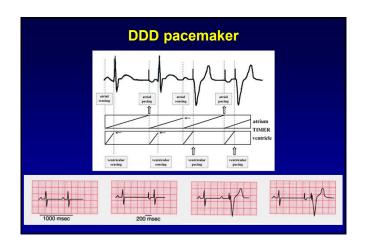
MECHANISMS OF ARRHYTHMIAS

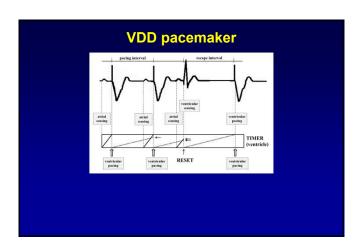
UNIVERSITY OF DEBRECEN
FACULTY OF MEDICINE
DIVISION OF CLINICAL PHYSIOLOGY

I. Chamber	II. Chamber	III. Pacemaker	IV. Rate	V. Special function
paced	sensed	activity	responsive function	Special function
A: Atrium	A: Atrium	l: Inhibited	M: Multi- programmable	P: Anti-tachycardia
V: Ventricle	V: Ventricle	T: Triggered	R: Rate responsive	S: Shock-, CV defibrillation
D: Dual	D: Dual	D: Dual	C: Advanced communication	D: P+S
	O: None	O: None	O: None	O: None

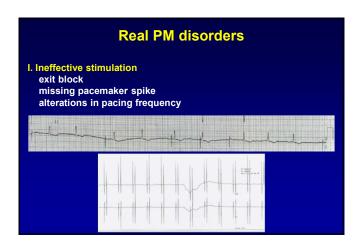

Frequently used permanent pacemakers


AAI (AAIR): P wave inhibited atrial demand (R = rate responsive)


VVI (VVIR): R wave inhibited ventricular demand (R = rate responsive)


DDD (DDDR): combined atrial-ventricular, AV sequential stimulation (R = rate responsive)

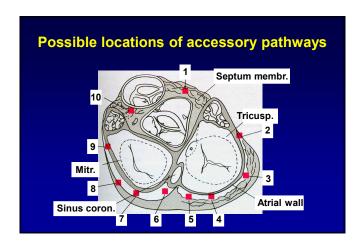
VDD (VDDR): two chamber, one electrode, P wave sensed ventricular stimulation (R = rate responsive)

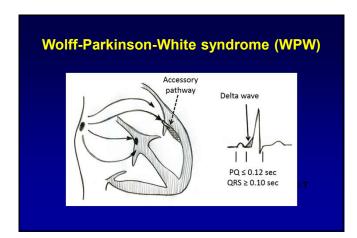


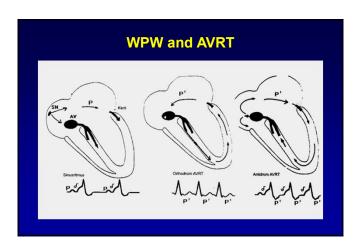
Testing the pacemaker function - ECG registration (at least 3 channels) - activation of the pacemaker stimulating frequency (carotis massage, or magnet) - detection of a low battery (with or without magnet) battery low: reduced stimulating frequency increased duration of PM pulse (special unit is needed) - 24-hour Holter monitoring - chest X-ray (testing the electrode position)

Normal pacemaker function with seemingly abnormal ECG signs Pseudofusion Fusion Hysteresis

Reentry


General characteristics of reentry arrhythmias


- start and stop abruptly (paroxismally)
- mostly initiated by a premature beat
- regularity
- terminated by increasing the refractoriness of one part of the reentry circle (e.g. vagal maneuvers)


Clinical forms of reentry arrhythmias

- Sinus node reentry tachycardia
 Atrial reentry tachycardia
 Atrial flutter
 Atrial fibrillation

- 4. Atrial fibrillation
 5. AV node reentry tachycardia (AVNRT)
 6. Atrioventricular reentry tachycardia (AVRT)
 7. Bundle branch reentry
 8. Most ventricular tachycardias (VT) (90%)
 9. Ventricular fibrillation (VF)

Paroxismal atrial fibrillation in WPW syndrome FBI tachycardia <u>F</u>ast **B**road <u>Irregular</u>

Ectopy

- Requirements:
 slowing of the normal dominant sinus rhythm and/or
 - usurpation an acceleration of a lower pacemaker which takes control

Characteristics:

- gradual onset
 usually not initiated by a premature beat
 somewhat irregular
 not terminated by vagal maneuvers
 AV block of varying degrees is frequently present

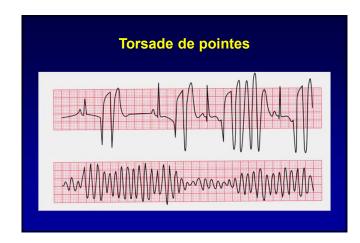
Clinical forms:

- nical rorms:

 1. Wandering atrial pacemaker

 2. Ectopic atrial tachycardia

 3. Multifocal atrial tachycardia


 4. Ectopic junctional rhythms

 5. Ectopic ventricular rhythms

Triggered activity

- Characteristics:
 initiated by afterdepolarisations (EAD, DAD)
 EADs may result in "torsade de pointes" VT
 DADs occur in digitalis-, reperfusion- and catecholamine-induced arrhythmias
 EADs and DADs are evoked by increases in the intracellular Ca²+ concentration

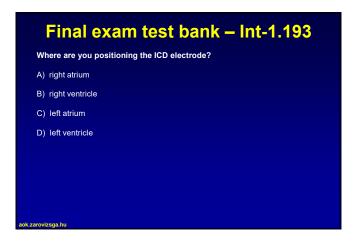
- Clinical forms:
 1. "torsade de pointes"
 2. some ventricular tachycardias

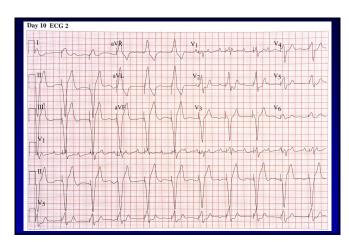
Final exam test bank - Int-1.24

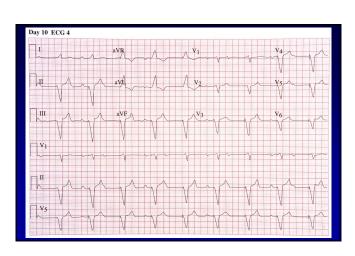
A regular wide QRS complex tachycardia can not be:

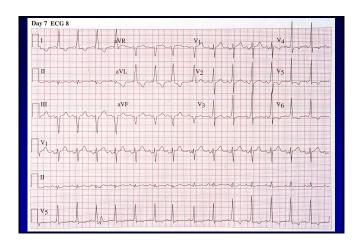
- A) ventricular tachycardia
- B) supraventricular tachycardia with bundle branch block
- C) atrial fibrillation with bundle branch block
- D) antidromic atrioventricular reentry tachycardia (WPW-syndrome)
- E) atrial flutter with bundle branch block

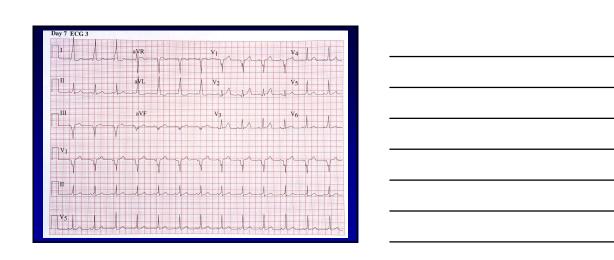
aok.zarovizsga.h


Final exam test bank - Int-1.126


Implantable cardioverter defibrillator can be used as the treatment of arrhythmia because these devices can cure the underlying disease which caused the arrhythmia.


- A) Both of them are correct, there is causal relationship between them
- B) Both of them are correct, but there is no causal relationship between them
- C) The first part is correct, the second one is wrong
- D) The first part is wrong, the second one is correct
- E) Both of them are incorrect


aok.zarovizsga.h


Final exam test bank - Int-1.181 An 81-year-old man has been complaining about fatigue for few weeks, one time he had syncope and collapse. ECG: bradyarrhythmia. In the anamnesis there are diabetes mellitus, hypertension, EF (ejection fraction):47%. Which device would you choose? A) one chamber pacemaker B) biventricular pacemaker C) VVI pacemaker D) DDD pacemaker E) biventricular ICD Final exam test bank - Int-1.183 The function of the pacemaker, except: A) hysteresis B) sensitivity C) basic frequency D) antitachycardia pacing function Final exam test bank - Int-1.184 Indication for pacemaker implantation, except: A) third-degree atrioventricular block B) first-degree atrioventricular block C) bradyarrhythmia D) carotis sinus hyperaesthesia

